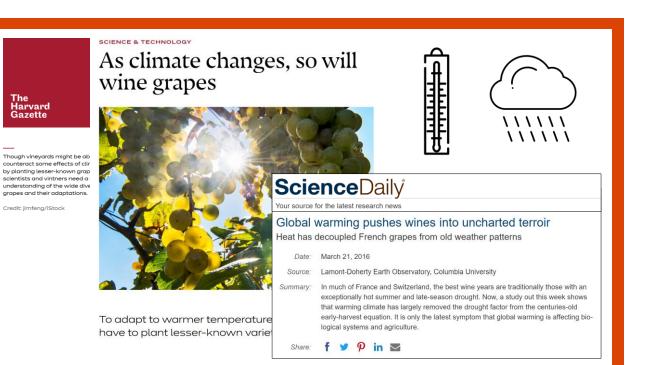
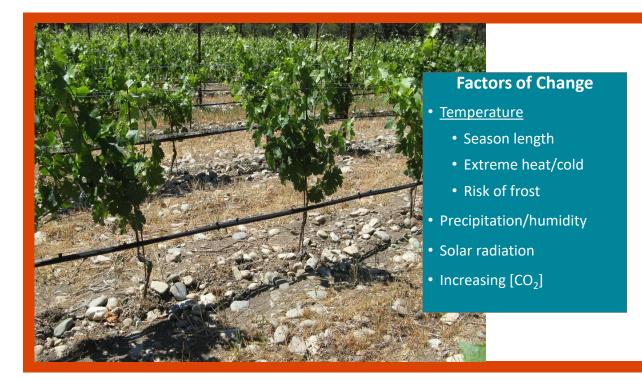


Department of Horticulture | Oregon Wine Research Institute


Adapting Vineyards for Climate Change


Patty Skinkis, PhD Professor & Viticulture Extension Specialist

VinCO 2023 – Grand Junction, CO – January 19, 2023

2

Historical Climate Change

- Vineyards in England Baltic Sea region • 900-1300 AD
- **12-13th Century** Europe harvested grapes 1 month later than today
- 14th Century Little Ice Age – vineyards shift to southern Europe

Estimated 3°*F change in temperature since* 12th and 13th century!

OREGON STATE UNIVERSITY 4

International Predictions

• Spain, Portugal, S. Africa, Australia

- Problem: Increasing heat inland
- · Resolution: Move to coastal regions and higher elevations
- Europe
 - Wine production moves north to cool climate regions
 - 85% reduced acreage in Mediterranean

US Predictions

Acreage Reductions

- Major regions 81% (White et al. 2006)
- Premium wine regions 20% by 2040 (Diffenbaugh et al. 2011)
- How?
 - Reduced fruit production (quantity and quality)
 - Lack of water availability
 - Shift in phenology, creating more risk

Temperature extremes = More days >95°F

https://vineyards.com/photos/maps/USA%20Wine%20Map.png

OREGON STATE UNIVERSITY 6

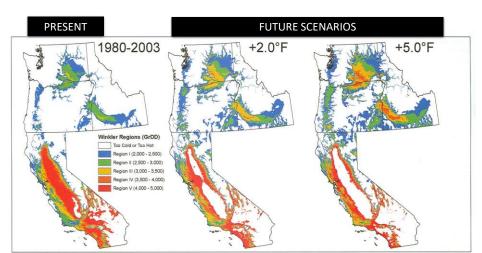
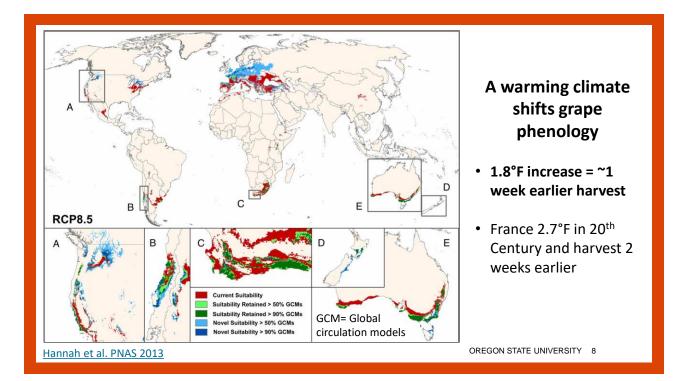
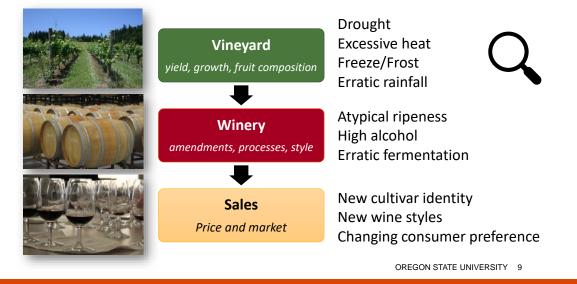




Figure V. Winkler Regions for the western U.S. based on Daymet (Thornton et al., 1997) daily 1 km resolution daily temperature data (growing degree-days, base 50°F over Apr-Oct). The left panel is the average over the 1980-2003 time period. The middle panel is a projection of a +2.0°F increase over 1980-2003 (loy range of projected climate change by 2049). The right panel is a projection of a +5.0°F increase over 1980-2003 (loy range of projected climate change by 2049).

Jones 2007

How changing climate impacts the wine industry...

Modifying Current Vineyards

Short Term Options

Modifying Training Systems

Modifying Training Systems

Hanging Systems for Shading

- lower density plantings to conserve water
- hanging systems with higher shoot density or double canopy

OREGON STATE UNIVERSITY 14

Temperature modifications

- Retrain to higher head height/fruit zone
 - Frost protection
 - Heat reduction from soil surface
- Vegetation on vineyard floor
 - Reduced heat near soil
 - Increased humidity
 - Soil moisture to mediate temperature
 - Water penetration (California 2023!)

Cover crop improves water infiltration

Central Valley California January 2023

Antonio Perez Ortiz

OREGON STATE UNIVERSITY 16

Vine Stressors and Disease Severity

Greater vine water, nutrient, and heat stress lead to more disease expression

- Viruses
 - Red Blotch
 - Leafroll
- Grapevine Trunk Diseases
 - Botryosphaeria Die back (Bot canker)
 - Esca
 - Eutypa

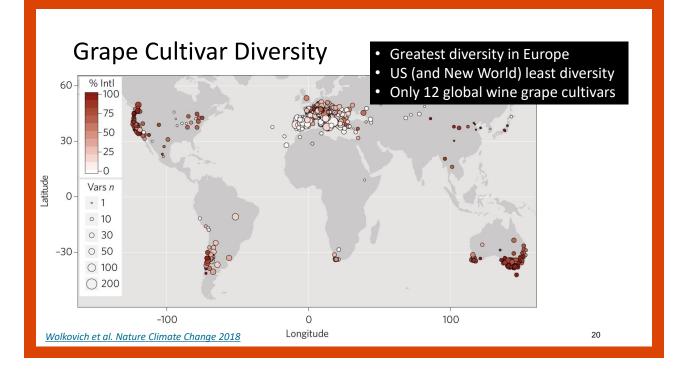
Modified irrigation, nutrition, floor management will be required

Wine Grape Cultivar Diversity Needed

Pinot noir

Pinot gris

Chardonnay



Merlot

Tempranillo

- Q. How many different wine grape cultivars exist in the world?
- Q. How many different cultivars make up the majority of wine grapes worldwide?

Welcome New Cultivars

Explore existing diversity or develop new?

- Existing:
 - Vitis vinifera wine grapes = 1,100 varieties
 - Evolved from selection pressures over centuries

Developing

- Takes 20-30 years or more!
- Unknown suitability to new environments, production

Rootstocks for the Future

- Rootstocks allow flexibility
 - Poor soils
 - Drought
 - Pest pressures
- Suitability needs further testing
 - Trials in progress throughout US, World
 - CO, CA, OR, WA, TX, MO, etc.

OREGON STATE UNIVERSITY 22

Rootstock	Riparia Gloire	3309C	101-14 Mgt	Schwarzmann	420A Mgt	5BB	S04	8B	5C	125AA	161-49C	99R	110R	1103P	140Ru	1616C	44-53 Malègue	Gravesac
Characteristic																		
Adaptability to shallow, dry, clay soil	1	3	2	1	3	2	1	-	3	3	1	2	4	3	3	1	2	2
Adaptability to deep silt or loam	1	1	1	2	1	1	1	_	3	2	1	3	3	3	3	2	3	3
Adaptability to deep, dry, sandy soil	2	2	2	3	2	1	1	_	1	1	2	2	3	3	4	2	2	3
Tolerance of water-logged soil	3	3	3	-	2	2	3	_	-	-	2	1	3	3	2	3	3	3
Tolerance of lime	1	1	1	-	3	3	2	2	2	4	3	2	2	2	2	1	1	3
Tolerance of acid soil	1	1	1	1	2	2	3	_	1	3	-	4	3	2	1	1	3	4
Nitrogen uptake	2	2	3	2	4	4	4	1	2	4	3	3	2	2	3	3	2	2
Vigor conveyed to vine	1	2	3	1	3	3	3	2	3	4	3	3	2	4	3	3	1	2
Drought tolerance	1	3	1	1	2	3	2	3	2	4	2	2	3	4	4	2	2	1
Resistance to ring nematode	2	1	4	2	4	2	2	2	2	_	_	2	3	1	2	_	2	1
Tendency to overbear	4	3	1	4	1	2	1	3	2	2	2	2	1	2	2	2	4	1
Vegetative cycle (time to ripening)	1	2	1	1	2	2	2	3	3	4	2	4	1	4	2	4	2	2

Table 1. Grapevine rootstock ratings

From Grapevine Rootstocks for Oregon Vineyards, OSU Extension

Vegetative cycle: 1=shortest, 4=longest

Nematode data:

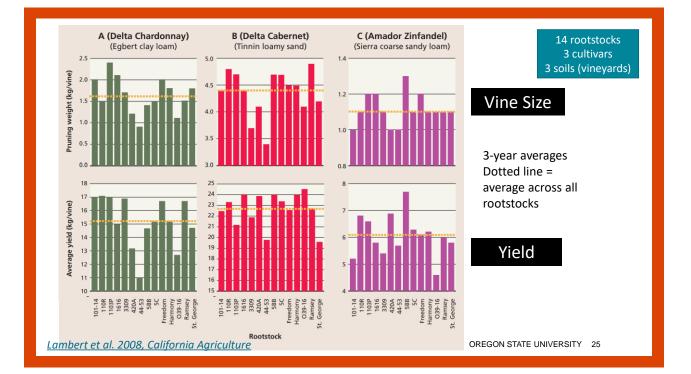
1=highly susceptible 2=susceptible 3=moderately resistant 4=resistant

All others: 1=lowest, 4=highest

101-14 <u>not</u> ring nematode resistant

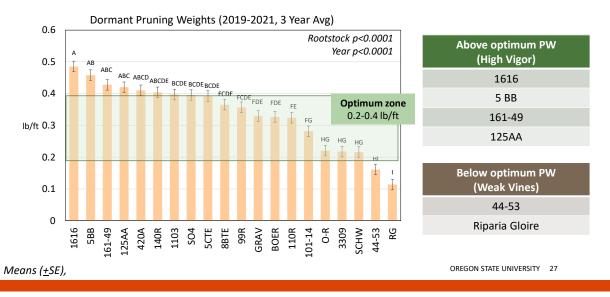
TABLE 1. Rootstock characteristics									
Rootstock	Parentage	Vigor*	Drought resistance	Lime tolerance†	Salt resistance	Wet feet‡	Soil preference§		
				%					
St. George	V. rupestris	н	Var	14	M/H	L/M	Deep, uniform, loam		
1616C	V. solonis × V. riparia	L	L	L/M	M/H	н	Deep/fertile		
3309C	V. riparia × V. rupestris	L/M	L/M	11	L/M	L/M	Deep, well-drained		
44-53	V. riparia × 144M	М	M/H	10	na	н	Loam/good fertility, high Mg		
101-14	V. riparia × V. rupestris	L/M	L/M	9	L/M	M/H	Heavy, moist clay		
420A	V. berlandieri × V. riparia	L	L/M	20	L	L/M	Fine texture, deep/fertile		
5BB	V. berlandieri × V. riparia	М	L/M	20	L/M	Var	Moist clay		
5C	V. berlandieri × V. riparia	L/M	L	20	М	Var	Moist clay		
1103P	V. berlandieri × V. rupestris	н	Н	17	М	н	Adapted to drought, saline soils		
110R	V. berlandieri × V. rupestris	M/H	н	17	М	Var	Hillside soils, acid soils, moderate fertility		
reedom	1613 C × V. champinii	Н	M/H	М	L/M	Ĺ	Sandy to sandy loams		
Harmony	1613 C × V. champinii	M/H	Var	М	L/M	L	Sandy loams, loamy sands		
Ramsey	V. champinii	VH	Н	М	Н	L/M	Light sand, infertile soils		
039-16	V. vinifera × V. rotundifolia	н	L	L	L	na	Poor on coarse, sandy soils		

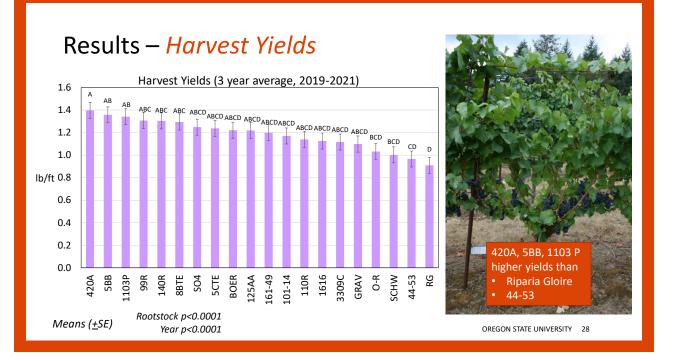
* L = low; M = medium; H = high; VH = very high; Var = variable; na = not available.

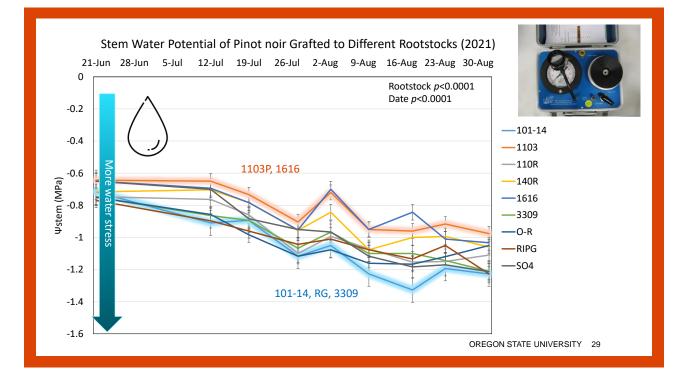

† Tolerance to lime-induced chlorosis (percent by weight of finely divided calcium carbonate in soil that can be tolerated by the rootstock).

Wet feet = tolerance to excessive moisture caused by poor soil drainage

§ Actual performance characteristics of these rootstocks on specific soils and scions may vary.

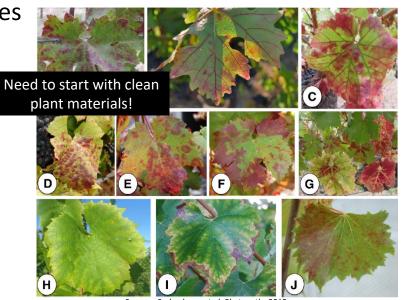

Source: Christensen (2003) and Pongracz (1983).


Christensen et al. 2003



OSU Rootstock Research		
	125AA 140R 161-49 1616 3309C 420A 44-53 5BB 5CTE	140 Ru 110 R 5 BB 8 B east drought-tolerant
	8BTE 99R BOER GRAV own-rooted Riparia Gloire Schwarzmann SO4	Schwarzmann

Impacts on Vine Growth – Pruning Weight (OR)


Vineyard Design

- Row Orientation
- Row and vine spacing
- Training system
- Head height
- Irrigation methods
- Permaculture techniques

Grapevine Viruses

More than 80 viruses of grapevines!

- Red Blotch
- Leaf Roll
- Fan Leaf Pinot gris Virus
- Grapevine virus A
- Grapevine virus B
- Rupestris stem pitting
- Tomato Ring Spot Virus
- Many more...

Source: Sudarshana et al. Phytopath. 2015

Plant Materials - Certified or not?

• Certified plant materials

- Propagated from mother vines that are part of a state certification program.
- Certification program has protocols to evaluate and test vines for viruses and other diseases of importance.
- Tested only for known viruses listed in state certification program.
- Not all are free of crown gall.

• Non-certified materials

- Not guaranteed to be free of viruses or diseases of concern.
- Not propagated from vines under strict evaluation of a certification program.
- Buy at your own risk.
- Often "new" cultivars or those that lack wide commercial significance are not certified.

NCPN	Grapes.	
NCPN Grapes Home	Welcome to the National Clean Plant Network for Grapes	
About NCPN Grapes		
Grape Clean Plant Centers	NCPN-Grapes	
NCPN Grape News	The National Clean Plant Network for Grapes (NCPN-Grapes) is a body of	Learn more at:
Meetings & Members	industry members, experts in plant pathology, regulators and clean plant centers that were created to develop and provide healthy grapevine material	National Class Dis
Education and Outreach Materials	to the grape industry in the United States.	National Clean Plan
Grape Viruses	NCPN-Grapes clean plant centers improve the health and productivity of	Network for Grape
Economic Benefits	GRAPES vineyards in the United States. The headquarters of NCPN-Grapes is at Foundation Plant Services at the University of California, Davis. FPS also	
The Process	manages the primary foundation vineyard for NCPN.	
State Certification	WSU Prosser	
Success stories	Cornel	
Selected publications	UC Davis, Hoodquarters Missouri 33	
National Clean Plant Network	Headquarters Missorit State University	
	The Midwest Center of NCPN-Grapes, Missouri State University	
	The Eastern NCPN-Grapes Center, Cornell University	

Summary

Develop for changes

- Increased temperatures
- Drought
- Erratic rainfall/storms
- Frost/freeze
- Shifting grapevine phenology
- Methods to adopt
 - New varieties
 - Rootstocks
 - Training Systems
 - Vineyard design

OREGON STATE UNIVERSITY

CLIMATE CHANGE Symposium

Part Two – Enology

Interested in learning more?

www.asev.org

ASEV membership: Access to recorded sessions from Viticulture Climate Change Session in 2022!

74TH ASEV NATIONAL CONFERENCE JUNE 26-29, 2023 asev.org/2023-national-conference

Questions?

Patty Skinkis, PhD Dept of Horticulture Oregon Wine Research Institute patricia.skinkis@oregonstate.edu

owri.oregonstate.edu