

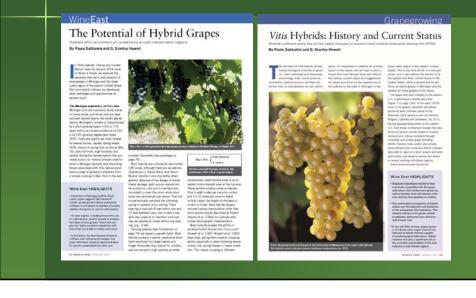
Growing Super-Hardy Cultivar in Michigan; Impact of Vineyard Management on Fruit Quality

Paolo Sabbatini

Michigan State University Department of Horticulture

VinCO 2015

MICHIGAN STATE U


Acknowledgments

- Kateri Bigler Development Assistant Colorado Association for Viticulture & Enology (CAVE)
- Melinda Tredway Program Director Colorado Association for Viticulture & Enology (CAVE)
- Dr Horst Caspari Professor & State Viticulturist Colorado State University

Outline

- Growing Super-Hardy Cultivar in Michigan
 - Definition of Super-Hardy
 - Super-Hardy in Michigan
 - NE1020 results
- Impact of Vineyard Management on Fruit Quality
 - General overview
 - Experience with cv. Marquette

Summary of my talk Wines & Vines Jan-Feb 2014

Premise
 Impact of Climate in Viticulture "Conditions of culture" I am working are completely different from yours Share with you few things that could be important for you I reduced tables and data (CO <i>team is the</i> <i>data makers for you!</i>) Please stop me any time! We have several experts in the room!

SHC Super-Hardy CVs What are those?

Cold hardy, Vitis riparia-based wine grape cultivars in the 1990s created a new and rapidly expanding industry of small vineyard and winery enterprises in more than 12 states in New England, northern New York, and the Upper Midwest, boosting rural economies in those regions.

Viticulture, enology and marketing for cold-hardy grapes

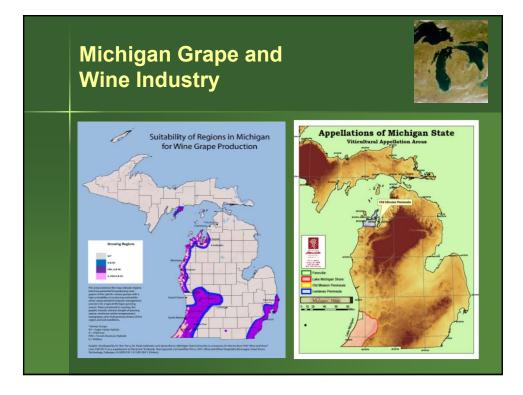
Approximate warmest temperature where 80-100% primary bud kill my be expected to occur in midwinter

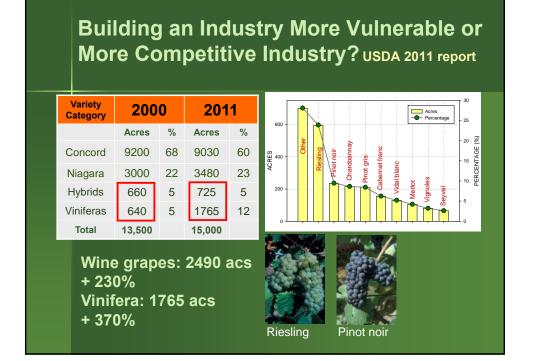
Cultivar	Ten	np.	Cultivar	Ter	np
(Vinifera)	F	C	(Hybrids)	F	С
Muscat Ottonel	-6	-20	Traminette	-20	-28
Merlot	-9	-21	Vidal blanc	-22	-30
Pinot gris	-10	-23	Chardonel	-22	-30
Pinot noir	-10	-23	Chambourcin	-23	-30
Sauvignon blanc	-10	-23	Seyval	-23	-30
Gewurztraminer	-12	-24	Vignoles	-26	-32
Chardonnay	-13	-25	Frontenac	-35	-37
Riesling	-14	-25	Frontenac gris	-35	-37
Cabernet Franc	-17	-27	Marquette	-35	-37

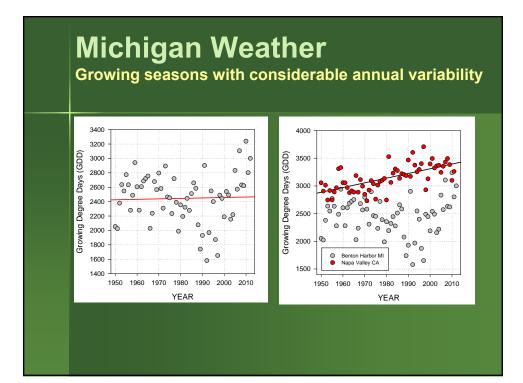
Approximate warmest temperature where 80-100% primary bud kill my be expected to occur in midwinter. Elaborated from Wine Grape Production Guide for Eastern North America. 2008. T. Wolf et al. and Zabadal T., Sabbatini P., Elsner D., 2008. Wine Grape Varieties for Michigan and Other Cold Climate Viticultural Regions. MSU Extension Bulletin CD-007.

Michigan Mixed Viticulture 5 varieties are 75% of US acreage: Cabernet Sauvignon, Merlot, Chardonnay, Pinot noir and Zinfandel

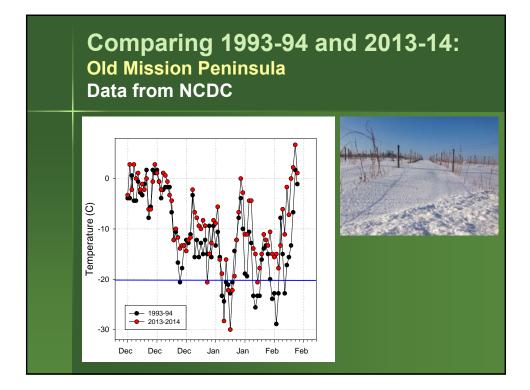
Native, Hybrid, Vinifera, Super Hardy varieties

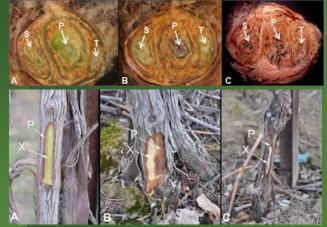

Concord Vitis labrusca


Vignoles Hybrid



Pinot blanc *Vitis vinifera*


Frontenac Vitis riparia based



6

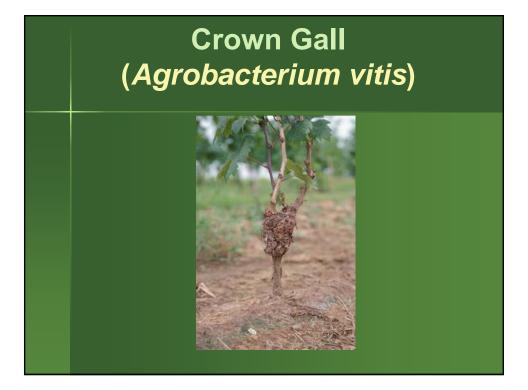
Assessing Grapevine Cold Injury

Cross sections of grapevine compound buds showing the location of primary (P), secondary (S), and tertiary (T) buds. A) All three buds are alive; B) P bud is dead, S, T buds are alive; C) All three buds are dead.

A) Dead phloem but healthy, green xylem is visible; B)
Dead phloem and damaged xylem (milky-white) is visible;
C) Both the phloem and xylem are dead.

What do you do once the level of damage has been determined?

- With 10-15 % damage to primary buds only there is probably no need to adjust your winter pruning.
- Higher level of damages leave a higher number of buds at winter pruning; e.g. prune to 4-5 bud spurs rather than the standard 2-3 bud spurs and/or leave more spurs/canes per vine.
- At very high levels of damage, say 80 % or more, reestablish the bearing structure of the vine.
- No winter pruning until spring with high levels of damages.


Adapted from Caspari and Larsen (2005). Evaluating grape bud damage prior to winter pruning. Colorado State University.

1995 results from variety trial at SWMREC (Howell, 1995)

Muller Thurgau 0 3.2 Melody 2.8 7.3 -62 Muscat Ottonel 0 1.6 Ravat 34 16.3 11.8 +38 Ortega 0 3.5 Valvin muscat 6.8 10.5 -35 Pinot gris 0 2.9 NY 63.1016.1 5.9 13.5 -56 Riesling 4.5 4.1 NY 65.403.1 1.9 13.1 -85 Scheurebe 6.4 4.6 NY 655.33.13 4.3 8.3 -48 Cabernet franc 0 3.3 NY 70.804.15 1.5 10.3 -85 Merlot 0 2.9 NY 70.834.5 1.0 5.8 -83		(kg/vine)	Cultivar	Yield (kg/vine)	Δ %
Muller Thurgau 0 3.2 Melody 2.8 7.3 -62 Muscat Ottonel 0 1.6 Ravat 34 16.3 11.8 +38 Ortega 0 3.5 Valvin muscat 6.8 10.5 -35 Pinot gris 0 2.9 NY 63.1016.1 5.9 13.5 -56 Riesling 4.5 4.1 NY 65.403.1 1.9 13.1 -85 Scheurebe 6.4 4.6 NY 655.33.13 4.3 8.3 -48 Cabernet franc 0 3.3 NY 70.804.15 1.5 10.3 -85 Merlot 0 2.9 NY 70.834.5 1.0 5.8 -83	1994	1989-93	(Hybrids)	1994	1989-93	
Muscat Ottonel 0 1.6 Ravat 34 16.3 11.8 +38 Ortega 0 3.5 Valvin muscat 6.8 10.5 -35 Pinot gris 0 2.9 NY 63.1016.1 5.9 13.5 -56 Riesling 4.5 4.1 NY 65.403.1 1.9 13.1 -85 Scheurebe 6.4 4.6 NY 655.33.13 4.3 8.3 -48 Cabernet franc 0 3.3 NY 70.804.15 1.5 10.3 -85 Merlot 0 2.9 NY 70.834.5 1.0 5.8 -83	0	3.8	Chardonel	2.5	11.0	-77
Ortega 0 3.5 Valvin muscat 6.8 10.5 -35 Pinot gris 0 2.9 NY 63.1016.1 5.9 13.5 -56 Riesling 4.5 4.1 NY 65.403.1 1.9 13.1 -85 Scheurebe 6.4 4.6 NY 655.33.13 4.3 8.3 -48 Cabernet franc 0 3.3 NY 70.804.15 1.5 10.3 -85 Merlot 0 2.9 NY 70.834.5 1.0 5.8 -83 Nebbiolo 0 1.1	0	3.2	Melody	2.8	7.3	-62
Pinot gris 0 2.9 NY 63.1016.1 5.9 13.5 -56 Riesling 4.5 4.1 NY 65.403.1 1.9 13.1 -85 Scheurebe 6.4 4.6 NY 655.33.13 4.3 8.3 -48 Cabernet franc 0 3.3 NY 70.804.15 1.5 10.3 -85 Merlot 0 2.9 NY 70.834.5 1.0 5.8 -83 Nebbiolo 0 1.1 </td <td>0</td> <td>1.6</td> <td>Ravat 34</td> <td>16.3</td> <td>11.8</td> <td>+38</td>	0	1.6	Ravat 34	16.3	11.8	+38
Riesling 4.5 4.1 NY 65.403.1 1.9 13.1 -85 Scheurebe 6.4 4.6 NY 655.33.13 4.3 8.3 -48 Cabernet franc 0 3.3 NY 70.804.15 1.5 10.3 -85 Merlot 0 2.9 NY 70.834.5 1.0 5.8 -83 Nebbiolo 0 1.1 1.1 1.1 1.1 1.1 1.1	0	3.5	Valvin muscat	6.8	10.5	-35
Scheurebe 6.4 4.6 NY 655.33.13 4.3 8.3 -48 Cabernet franc 0 3.3 NY 70.804.15 1.5 10.3 -85 Merlot 0 2.9 NY 70.834.5 1.0 5.8 -83 Nebbiolo 0 1.1 1.1 1.1 1.1 1.1 1.1	0	2.9	NY 63.1016.1	5.9	13.5	-56
Cabernet franc 0 3.3 NY 70.804.15 1.5 10.3 -85 Merlot 0 2.9 NY 70.834.5 1.0 5.8 -83 Nebbiolo 0 1.1 1.1 1.1 1.1 1.1	4.5	4.1	NY 65.403.1	1.9	13.1	-85
Merlot 0 2.9 NY 70.834.5 1.0 5.8 -83 Nebbiolo 0 1.1 <	6.4	4.6	NY 655.33.13	4.3	8.3	-48
Nebbiolo 0 1.1	0	3.3	NY 70.804.15	1.5	10.3	-85
	0	2.9	NY 70.834.5	1.0	5.8	-83
Pinet Mounier 0 2.1	0	1.1				
	0	2.1				
Finol Meunier		0 0 0 4.5 6.4 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 3.8 Chardonel 0 3.2 Melody 0 1.6 Ravat 34 0 3.5 Valvin muscat 0 2.9 NY 63.1016.1 4.5 4.1 NY 65.403.1 6.4 4.6 NY 655.33.13 0 3.3 NY 70.804.15 0 2.9 NY 70.834.5 0 1.1	0 3.8 Chardonel 2.5 0 3.2 Melody 2.8 0 1.6 Ravat 34 16.3 0 3.5 Valvin muscat 6.8 0 2.9 NY 63.1016.1 5.9 4.5 4.1 NY 65.403.1 1.9 6.4 4.6 NY 655.33.13 4.3 0 3.3 NY 70.804.15 1.5 0 2.9 NY 70.834.5 1.0 0 1.1	0 3.8 Chardonel 2.5 11.0 0 3.2 Melody 2.8 7.3 0 1.6 Ravat 34 16.3 11.8 0 3.5 Valvin muscat 6.8 10.5 0 2.9 NY 63.1016.1 5.9 13.5 4.5 4.1 NY 65.403.1 1.9 13.1 6.4 4.6 NY 655.33.13 4.3 8.3 0 3.3 NY 70.804.15 1.5 10.3 0 2.9 NY 70.834.5 1.0 5.8 0 1.1 5.8 5.8

2014 results from variety trial at SWMREC

Cultivar (Vinifera)	Crop level as Percentage 2007-2013	Cultivar (Hybrids and Native)	Crop level as Percentage 2007-2013
Gruner Veltliner	0%	Traminette	50%
Gewürztraminer	0%	Niagara	70%
Pinot Blanc	0%	Cayuga white	70%
Gamy Noir	0%	Chambourcin	70%
Merlot	5%	Corot Noir	80%
Lemberger	5%	Vidal	85%
Pinot noir	10%	Noiret	90%
Albarino	25%	Brianna	95%
Chardonnay	95%	La Crescent	95%
Riesling	100%	Concord	100%
		Frontenac	100%

Frontenac

- The King of Super Hardy has canes that are "green" from base to tip (not seen with most grapes in MI) at winter pruning.
- Healthy and vigorous in vineyard only issues in MI are Powdery Mildew and Leaf Phylloxera.
- Negatives: Strong varietal aroma and high acidity. High costs (relative to crop value) of netting waiting for hang time acidity drop. (small berries complete loss to birds)
- Because of strong aromas, in MI wine industry demand is relatively low (many other better varietals available) but after the limited use for Port styles, it is finding a niche in Rosès and fruit blends.

<section-header><list-item><list-item><list-item><list-item> Out of the terms of terms of the terms of ter

Lacresent

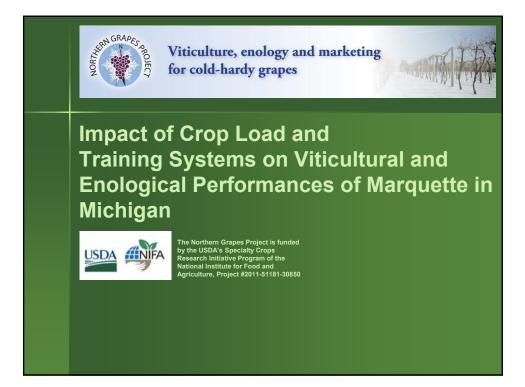
- Good on sandy soil
- Vine loss in heavy wet soil
- Can over-crop with lack of varietal aromas
- Wet rainy harvest season dilute sugars and flavors

BRIANNA

- Strong non-wine aromas, a negative to traditional wine drinkers is a pleasant plus in tasting rooms for semi to sweet "taste" customers
- Healthy and productive

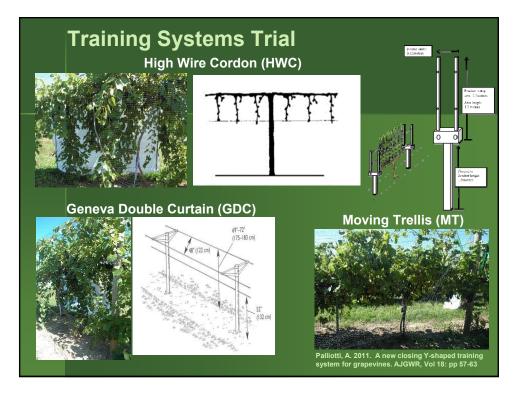
MARQUETTE

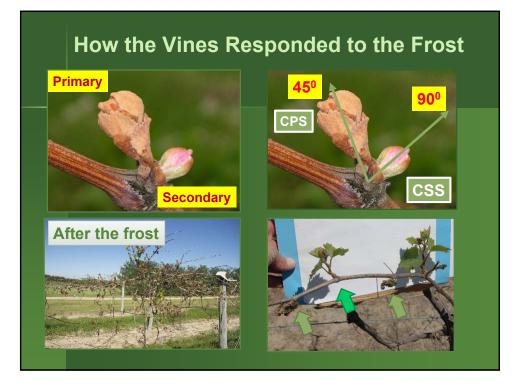
- Super HIGH wine quality
- Major issue earliest bud break and frost damage of primary shoots
- Can produce full crop potential from non count positions
- Brittle shoots, wind damages and also during shoot positioning
- Sensitive to shade (cold hardiness)
- Bird damages (small berries)
- High acidity in cool climate, but....

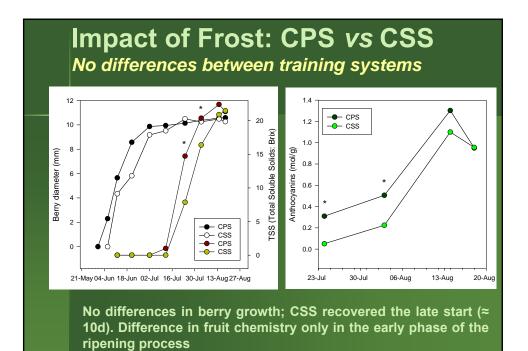

Varietal Lbs/vine	Tons/acre	Vine yield (%)	Yield/acre (%)
Brianna 17.5	6	+11	+11
Frontenac 15.7	5.4	0	0
Lacresent 14.5	5	-8	-7
Marquette 12.5	4.6	-20	-18
St Croix 14.3	4.9	-9	-9

Some ro Mean 20		ruit Che	mistry	
Varietal	Brix	pН	ТА	
Brianna	20.0	3.6	5.3	
Frontenac	22.8	3.2	13.4	
Lacresent	23.5	3.2	11.1	
Marquette	24.0	3.3	6.1	
St Croix	19.7	3.6	6.8	
Varietal	Harvest date			
Brianna	Sep 22	Chardonna	y is harveste	he
Frontenac	Sept 15		after Fronter	
Lacresent	Sept 20			
Marquette	Sept 8			
St Croix	Oct 4			

What is	Quality?	The Driv	ers 🧕	
	The Drivers	s of Quality		
More Important Less Control			Less Important More Control	
Site Selection	Vineyard Establishment	Vineyard Management	Juice and Wine Production	
GDD Accumulation Frost Free Days Minimum Winter Temperature	Cultivar Rootstock Planting Density	Trellis System Training System Canopy management Crop load and vine balance Harvest time	Yeast, Enzyme Fermentation Temperature Aging Barrel	
80	<mark>%</mark>	20	<mark>%</mark>	

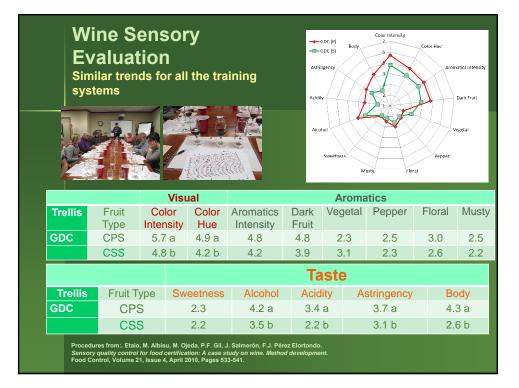






vine growth (crop load) to improve fruit quality at harvest.

Trellis Syst	em Tota	Number of bud	ls Percent prima		
HWC		176 a	19.9		≈30-4
GDC		196 a	17.	5 a	~50-
МТ		223 a	21.9	9 a	
		nt of the trainin C) the frost in	ng system (fro npacted simila		
MT or 1.8 for (
MT or 1.8 for (primary buds Days from bud-burst (d)*	GDC and HW	C) the frost in	npacted simila	arly	
MT or 1.8 for (primary buds Days from	GDC and HW	C) the frost in Pea-size	veraison	arly Harvest	


Yield Qual		npon	eı	nts	ar	nd	Fr	uit	
Trellis System	Yield (Kg/vine)	Number of clusters		luster /eight		ries luster		ning ghts	Ravaz Index
HWC	3.30	67		(g) 62.9	6	0		(g) .93	3.5
GDC	3.20	69		53.4		4		.02	3.8
MT	3.53	75		58.0	6	2	1.	12	3.8
Trellis System	TSS (ºBrix	() pH		TA (g	/L)	Phen (a.u			ocyanin nol/g)
HWC	19.5 b	3.4		9.2	2	0.9	0 b	(0.91
GDC	21.4 a	3.3		9.4	ł.	1.0	5 a	(0.92
MT	19.7 b	3.4		9.8	3	0.9	6 b	1	1.01
	at the f harve			+15		at f hai		tim st	e

19

Yield Components and Fruit Quality Impact of bud type

Trellis System	Fruit Type	TSS (ºBrix)	pН	TA (g/L)	Phenolic (a.u./g)	Anthocyanin (mol/g)
HWC	CPS	20.3 abc	3.5 a	8.7 a	0.97 ab	0.91
	CSS	19.7 bc	3.3 b	9.9 b	1.01 ab	1.01
GDC	CPS	21.7 a	3.5 a	8.7 a	1.03 ab	0.93
	CSS	21.5 a	3.3 b	10.0 b	1.07 a	0.98
МТ	CPS	20.9 ab	3.5 a	8.1 a	0.94 b	1.07
	CSS	19.1 c	3.3 b	10.5 b	0.96 ab	0.99

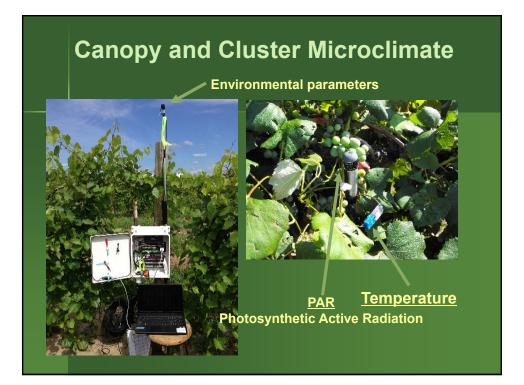
GDC Higher Brix per vine due to higher Brix in CSS CSS had lower pH and higher TA No significative impact on Phenolic and Anthocyanin

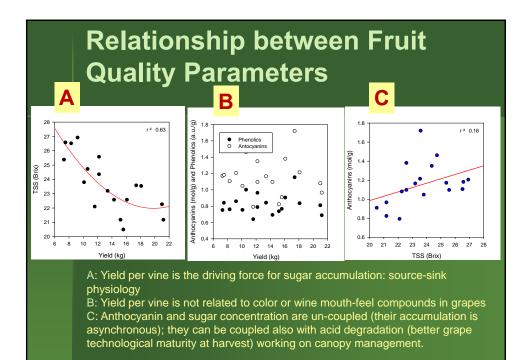
Conclusions 2012

- 2012 frost events similarly impacted the 3 training systems
- No differences in canopy growth and size (data not shown)
- Basic fruit chemistry of CPS and CSS was similar for all the training systems. Differences only due to late phenological stages at the beginning of fruit ripening.
- Yield per vine was similar between the training systems
- With 80% primary bud kill vines yielded about 2 T/acre
- Experimental wines made from CPS had more color, alcohol, acidity, astringency and body when compared with CSS wines (basic fruit chemistry at harvest different only for pH and TA)

Experimental Activity in 2013

Experimental activities focused on crop load


- Yield per vine was modified with:
 - Shoot thinning at fruit-set or cluster thinning at fruitset vines:
 - 3 or 6 per foot of cordon and High, Medium and Low yield per vine (270, 180, 115 clusters per vine)


The objectives: study interaction between (a) canopy growth and yield levels (crop-load), (b) cluster exposure and (c) fruit technological maturity at harvest.

Yield Components and Fruit Chemistry

Treatment	Yield	Yield	Cluster/		Berries /	Berry	Pruning
	Tons/acre	Kg/vine	vine	weight (g)	cluster	weight (g)	Weight (kg)
High	13.8 a	18.2 a	264.0 a	114.6	93.0	1.19	1.85 b
Medium	9.8 b	12.9 b	184.8 b	115.6	94.3	1.18	1.97 b
Low	6.9 c	9.1 c	114.3 c	109.2	91.4	1.17	2.41 a
The stress	. те	2	nH		Phonoli	ce Anti	hoevanin
Treatmer	nt TS: (°Br	-	рН	TA (g/L)	Phenoli (a.u./g		hocyanin mol/g)
Treatmer High	it	ix)	рН .6 b	TA (g/L) 6.70			-
	(°Br	i x) b 3	•		(a.u./g		mol/g)

Impact on TSS (Brix) of +10% with a reduction of yield of -50% No other impact on yield components or fruit quality parameters

Preliminary Conclusions 2013

- Yield per vine affected basic fruit chemistry, but only sugar accumulation at harvest (sourcesink)
- Canopy growth was impacted by yield per vine and reduced with high levels of yield.
- No yield components was impacted (cluster and berry size).
- Fruit quality at harvest was related to cluster exposure: 22.5 Brix with 6.7 TA at high yield; excellent values for winemaking (ratio 3.3*)

Conclusions The potential of hybrids

 Viticulture in the future will require the management of vines pests with fewer chemical inputs

 Lower cost of production than traditional freeze-susceptible cultivars

 Selection based more on perceived marketability and less on wine quality